KNOWLEDGE MANAGEMENT for NONRECURRING PROCESSES

"Ik heb het nog nooit gedaan, dus ik denk dat ik het wel kan"

NAG IQ meeting Knowledge Management for nonrecurring processes

From standards to practical use

8 november 2022 Jan Verbeek

www.adse.eu

Topics

- Introduction the importance of Knowledge Management
- Characteristics nonrecurring processes
- Relevant Knowledge Management theory and basics
- Lessons from Systems Engineering
- Lessons from Lean Development
- Recap

Introduction - ADSE consulting & engineering

Knowledge is the – partly subconscious – **personal ability** to perform a certain task or service

This ability is a function of Information, Experience, Skills and Attitude that somebody has at certain moment (ref. Prof Weggeman TUe)

"Yes, I've learned from my mistakes. I've learned if you call them 'missed opportunities' you get in less trouble."

It is costly wisdom that is brought by experience [Roger Ascham]

Following the P-D-C-A cycle – per step and for the whole process

Definition

- Not occurring or happening again, especially often or periodically.
- Noting or pertaining to an **income or charge** considered of a nature **not likely to occur or happen again**.
- In the aerospace industry: processes that happen only once, at least for a specific product or program
 - Initial development
 - R&D
 - Product Development
 - Type certification
 - Business development
 - Industrialization
 - Customer support package development
 - Significant changes
 - Variants and version development
 - Modifications and updates
 - Individual sales cases
 - Industrial change (rate change, re-location of production, supplier change)
 - Significant re-organizations and process improvements
 - Additional new services

Product development consists of 2 distinct phases

 Successful product development requires sound planning and decision making in the 1st phase – see lessons from Lean Development

Process development requires an understanding of its building blocks

Process development is required if the purpose and/or the environment of the process has to change

- How does Knowledge Management work for a nonrecurring environment?
- Engineering and other development work is often experience based so how do you get from standards to practical methods and skills?
- What are the relevant KM-processes?
- How do you address (personal) knowledge in relation to competencies for teamplay > organisational capabilities

Knowledge Management for Knowledge Development

Knowledge Development - Technology

Knowledge Development – Business Development

Different ways to measure Readiness (RL) or Maturity (ML) Levels

- Technology Readiness Levels (TRL)
 Integration Readiness levels / Integration Maturity Levels (IRL, IML)
- Manufacturing Readiness levels (MRL)
- Organizational Readiness levels
- Capability Maturity levels (CMM)
- Operational readiness levels

<u>Technology Readiness level (TRL)</u>: Developed by NASA to describe the maturity of a given technology. With a predetermined checklist the maturity of a technology can be established.

TRL has many limitations:

- Does not provide a complete representation of the (difficulty of) integration of multiple technologies in a system.
- Gives no guidance into uncertainty (risk, cost) that may arise when going up the TRL ladder
- There are no considerations to: integration, interoperability and sustainment of the operational environment
- Does not pay attention to develop related manufacturing capabilities
- Does not include effect of technology on the organizational, human resources etc.
- Does not concern with certification compliance
- And more....

From TRL → Integration Readiness Level (IRL)

READINESS LEVELS

TECHNOLOGY — ELEMENT				INTEGRATION - INTERFACE		
TRL	Definition		IRL	Definition		
9	Actual system "flight proven" through successful mission operations.		9	Integrated is Mission Proven through successful mission operations.		
8	Actual system completed and "flight qualified" through test and demonstration.	- Demonstrate	8	Actual integration completed and Mission Qualified through test and demonstration in the system environment.		
7	System prototype demonstration in		7	The integration of technologies has been Verified and Validated with sufficient details to be actionable.		
6	System/subsystem model or prototype demonstration in a relevant environment.		- 6	The integrating technologies can Accept, Translate, and Structure Information for its intended application.		
5	Component and/or breadboard validation in relevant environment.	- pling	5	There is sufficient Control between technologies necessary to establish, manage, and terminate the integration.		
4	Component and/or breadboard validation in laboratory environment.		- 4	There is sufficient detail in the Quality and Assurance of the integration between technologies.		
3	Analytical and experimental critical function and/or characteristic proof of concept.		3	There is Compatibility (i.e., common language) between technologies to orderly and efficiently integrate and interact.		
2	Technology concept and/or application formulated.	- Discover -	2	There is some level of specificity to characterize the Interaction (i.e., ability to influence) between technologies through their interface.		
1	Basic principles observed and reported.		1)	An Interface between technologies has been identified with sufficient detail to allow characterization of the relationship.		

- IRLs describe the integration maturity of a developing technology with another technology, developing or mature.
- Focus on; interface identification to successful integration
- Limited to interfaces between two technologies only

Figure 2. Technology and Integration Readiness Levels

Level	Manufacturing readiness level (MRL) description
10	Full rate production and lean production practices in place
	Low rate production , capability in place to begin full rate
9	production
	Pilot line capability demonstrated, ready to begin low rate
8	production
	Capability to produce systems, subsystems or components in
7	a production representative environment
	Capability to produce a prototype system or subsystem in a
6	production relevant environment
	Capability to produce a prototype components in a
5	production relevant environment
	Capability to produce the technology in a laboratory
4	environment
3	Manufacturing proof of concept developed
2	Manufacturing concepts identified
1	Basic manufacturing implications identified

- MRL is a measure to assess the maturity of manufacturing process which includes not only design but also optimization of the process (which is why MRL is from1-10)
- Focus on; manufacturing implication, capabilities, achieving full rate production and lean production practices
- There is no explicit focus on quality, a minimum (defined) acceptable quality is assumed.

The extent to which an organization is both willing and able:

- To implement and absorb a particular new or innovative technology or process
- To work with a new product or system with new functionality or requiring new operating procedures

There are 3 axes to determine SE capability maturity:

- Processes defined and executed, products realised
- Methods and tools in place and successfully used
- **People** trained, skilled/competent and engaged in SE processes

System Design, Product Realization, and Technical Management

Lessons from Systems Engineering

oore of stems Engine	ering Principles:	Professiona	l:	
 Systems Thinking Lifecycles Capability Engineer General Engineerin Critical Thinking Systems Modelling 	ing g and Analysis	Commun Ethics an Technica Negotiati Team Dyu Facilitati Emotiona Coaching	ications Id Professionalism I Leadership on mamics on I Intelligence g and Mentoring	Pay e atten profe skill
Technical:		Managemen	t	atti
Requirements Defin System Architecting Design for Integration Interfaces Verification Validation Transition Operation and Supp	ition	Planning Monitorii Decision Concurre Business Acquisitie Informati Configure Risk and Integrating:	ng and Control Management nt Engineering & Enterprise Integration on and Supply on Management ation Management Opportunity Management	develo
		Project Management Finance		
Systems Engin	eering Competer	Project Management Finance Logistics Quality cy Model - Profile tency rovides meaning behing	ciency Level Tabl	le
Systems Engin COMPETENCY AR Description: explain Why it matters: ind	eering Competer EA – Category: Competency and p	Project Management Finance Logistics Quality Model - Profile tency rovides meaning behing the competency and the	ciency Level Tabl	le
Systems Engin COMPETENCY AR Description: explain Why it matters: ind he absence of that	eering Competer EA – Category: Competency and p icates the importance of competency.	Project Management Finance Logistics Quality Model - Profile tency rovides meaning behind the competency and th	ciency Level Tabled the title.	e encountered in
Systems Engin COMPETENCY AR Description: explain Why it matters: ind he absence of that EFFECTIVE INDICA	eering Competer EA – Category: Competency and p icates the importance of competency. TORS OF KNOWLEDG	Project Management Finance Logistics Quality Cy Model - Profile tency rovides meaning behind the competency and th E, SKILLS, ABILITIES A	the title. The problems that may be	e encountered in
Systems Engin COMPETENCY AR Description: explain Why it matters: ind the absence of that EFFECTIVE INDICA WARENESS	EA – Category: Competer EA – Category: Competency and p icates the importance of competency. TORS OF KNOWLEDG SUPERVISED	Project Management Finance Logistics Quality Model - Profile tency rovides meaning behind the competency and th E, SKILLS, ABILITIES A PRACTITIONER	the title. The problems that may be ND EXPERIENCE SENIOR	e encountered in EXPERT
Systems Engin COMPETENCY AR Description: explain Why it matters: ind the absence of that EFFECTIVE INDICA AWARENESS	EA – Category: Competer EA – Category: Competency and p icates the importance of competency. TORS OF KNOWLEDG SUPERVISED PRACTITIONER	Project Management Finance Logistics Quality Quality rovides meaning behind the competency and th E, SKILLS, ABILITIES A PRACTITIONER	the title. The problems that may be ND EXPERIENCE SENIOR PRACTITIONER	e encountered in EXPERT

- How does Knowledge Management work for a nonrecurring environment?
 - > The same as for recurring processes but with a much longer learning cycle
 - > So take care of continuity in staffing, over subsequent development projects
- Engineering and other development work is often experience based so how do you get from standards to practical methods and skills?
 - > By sharing best practices and lessons learned from previous programs/projects in an honest way
 - > By securing continuity in teams with seniors and juniors
 - > By tailoring standards into your own methods suited for the situation/challenges
 - > By using test & evaluation for learning for continuous learning
- What are the relevant KM-processes?
 - Define your mission, vision, goals and strategy
 - Plan/design the new technology, value proposition, process
 - Develop and test using rapid prototypes or simulations/games
 - Evaluate and either adjust your vision, goals or strategy or start further iterations
- How do you address (personal) knowledge in relation to competencies for teamplay > organisational capabilities
 - By addressing cooperation models and team roles as essential parts of developers competences
 - By developing and refining cross-functional processes define interactions during process planning