

Advancing your Aerospace and Airport Business

Webinar SIG 3DP March 28th, 2024

Program:

- Welcome by Harry Kleijnen, chairman 3DP-cluster
- State of the Additive Manufacturing industry; 'Where are we?' by Daniel Hoogstraate, Account Manager Additive Manufacturing Services for the Netherlands at Materialise
- Introduction to most commonly used AM technologies: SLA, SLS, MJF, FDM & SLM by Rob van Loon, Manager Additive Manufacturing at KMWE Additive & Reuse
- When to use AM or not?
- Serial production in aerospace, actual parts
- Pitfalls when exploring appropriate applications for AM

NAG SIG 3D introduction

Vision:

Advancing the Dutch aerospace industry competitiveness through cutting edge **additive** technologies, fostering innovations and ensuring sustainable growth

Highlighting the opportunities of Additive Manufacturing:

- Freedom of Design allowing complicated geometries without compromising structural integrity
- Potential of cost reduction by waste reduction, less energy intensive processes and light weight components
- Time to market reduction. AM enables fast design iterations, optimized fine tuning to meet stringent performance and safety requirements
- Supply chain efficiency, on-demand production and reducing the need for extensive warehousing and long lead times

Pushing Performance and Boundaries.

Traditional manufacturing constraints often hinder innovation. AM technology opens new opportunities to push performance and expanding iterative thinking

Industrialization of Additive Manufacturing.

AM has matured substantially, from prototyping, tooling to nowadays series production including quality, safety and certification of AM produced parts

Collaboration.

Emphasizing partnerships between the Dutch AM ecosystem, aerospace industry players, academia and regulatory bodies.

Intro AM-Industry
 Cases AM in Aerospace
 Techniques in AM
 Wrap-up

Global metal and polymer Additive Manufacturing market 2020 to 2022 and supplier forecast 2027 [EUR billion]

9.22 Polymer Metal Source: additive-manufacturing-report.com © Copyright 2023, AMPOWER GmbH & Co. KG CAGR 18.3% 14.4% 3.98 3.59 3.04 2020 2021 2022 2027

Additive Manufacturing part manufacturing supplier market [EUR billion]

Polymer Additive Manufacturing technology landscape

TIME UNTIL INDUSTRIAL USE ● More than 5 years ● 2 to 5 years ● Less than 2 years ● Index reached 5 LB-PBF Widespread industrial use 4 Industrial use Powder Laser Deposition EB-PBF Filament FDM Wire Electric/Plasma Arc Deposition 3 Wire Electron Deposition Binder Jetting Coldspray First applications Wire Laser Deposition Pellet FDM Friction Deposition 2 Ultrasonic Welding Resistance Welding Prototype system Nano Particle Jetting OPowder Metallurgy Jetting Liquid Metal Printing Metal Lithography Jetting Metal SLS (Mold Slurry Deposition 1 Proof of concept 0 Т 2 3 4 5

TECHNOLOGY MATURITY INDEX

INDUSTRIALIZATION INDEX

Good and bad news about AM-adoption

'Gartner Research's Hype Cycle diagram' by Jeremy Kemp is licensed under CC BY-SA 3.0

Time

Gebrek aan interne expertise en know-how rond AM 45	%
Investeringskost 40	%
Gebrek aan een business case rond AM of die is niet duidelijk 34	%
Huidige technologische beperkingen van AM: productkwaliteit 23	%
Huidige technologische beperkingen van AM: productiesnelheid 18	%
Gebrek aan certificering en normering 18	%
Onduidelijkheid over certificering en normering 18	%
Weerstand tegen verandering en innovatie binnen het bedrijf 15	%
Huidige technologische beperkingen van AM: (multi-)materialen 14	%
Overige: 11	%
Huidige technologische beperkingen van AM: productgrootte 9	%
Moeilijke integratie in de huidige operationele werking van uw bedrijf 5	%
Intellectuele eigendomskwesties 3	%

FLAM3D // ENQUÊTEVERSLAG

328 Support Services GmbH/Deutsche Aircraft GmbH

(expleo)

Intro AM-Industry
 Cases AM in Aerospace
 Techniques in AM
 Wrap-up

AM Polymer Maturity Index 2022

StereoLithography Apparatus (SLA)

- Size: up to 2100x700x800mm
- **Key advantages:** Visual appearance, transparent materials, high accuracy
- Key disadvantages: Limited functionality, durability

Introduction to Stereolithography

Selective Laser Sintering (SLS)

- Size: Approx. 300x300x600mm
- Key advantages: Design freedom, no support requirements
- Key disadvantages: Surface finish, limited recycling of non-sintered material

Multi Jet Fusion (MJF)

- Size: Less than 500x500x500mm
- Key advantages: High complexity, designed for high volume production
- Key disadvantages: Expensive machinery & supplies

Fused Filament Fabrication (FFF / FDM)

- Size: Over 1000x1000x1000m
- Key advantages: Ease of use, continuous fiber reinforcement
- Key disadvantages: Less suitable for large series, visually less attractive

AMPOWER Maturity Index: Metal AM 2023

Material performance vs. productivity

Exemplary performance in terms of density

Laser Powder Bed Fusion (L-PBF / SLM)

- Size: up to 600x600x1500mm
- **Key advantages:** High complexity, fully dense, high accuracy

KMME

• Key disadvantages: Slow compared to other AM Metal technologies

Directed Energy Deposition (WAAM / LMD / etc)
Size: Virtually unlimited

- Key advantages: Size, production speed, multimaterial
- Key disadvantages: Low accuracy, rough near-netshape surface

Pitfalls..

Underestimating the complexity of AM

Technique as starting point

Price as first knock-out criterium

Low Management Involvement

Thank you for your attention!

