

# Additive Manufacturing and the Business Case

Webinar NAG

Onno Ponfoort, Berenschot

20 JUNI 2024



### Agenda

Additive Manufacturing and the Business Case

### **Introduction Berenschot**

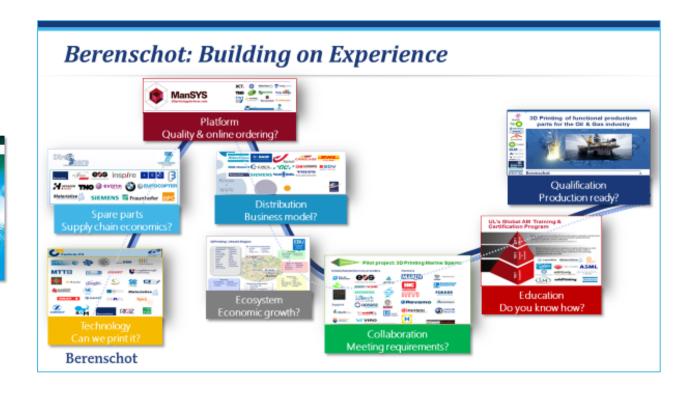
AM benefits

Some business cases








### **Onno Ponfoort - Berenschot**

### **Berenschot**

- General practice
- Founded 1938
- 450 staff
- HQ The Netherlands

#### **Onno Ponfoort**

- Practice Leader 3D Printing
- Active in 3D Printing since 2004
- Economic & organisational aspects





### 3D Printing/Additive manufacturing?

What it is, what you can use it for

- 3D printing/additive manufacturing: making three dimensional solid objects from a digital file.
- The object is created by laying down or hardening successive layers of material until the object is created..
- 3D printing enables you to produce complex shapes using less material than traditional manufacturing methods. It also allows you to print simple parts directly, without of using a mould.
- 3D printing technology is destined to transform almost every major industry.
- Most companies use 3D printing in the design process/prototyping: fast and relatively cheap.
- In many markets 3D Printing is also already used for end products: Automotive, Aviation, Construction, Consumer Products, Healthcare, Food, Oil & Gas.

#### Advancing your Aerospace and Airport Business

#### WEBINAR NAG - 20 JUNI 2024

### 3D Printing/Additive manufacturing?

What it is, what you can use it for

- 3D printing/additive manufacturing: making three dimensional solid objects from a digital file.
- The object is created by laying down or hardening successive layers of material until the object is created..
- 3D printing enables you to produce complex shapes using less material than traditional manufacturing methods. It also allows you to print simple parts directly, without of using a mould.
- 3D printing technology is destined to transform almost every major industry.
- Most companies use 3D printing in the design process/prototyping: fast and relatively cheap.
- In many markets 3D Printing is also already used for end products: Automotive, Aviation, Construction, Consumer Products, Healthcare, Food, Oil & Gas.



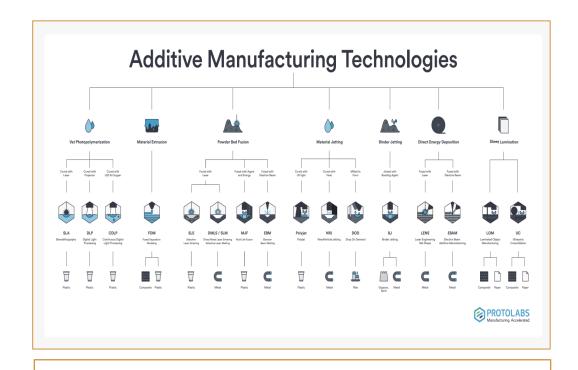






### AM/3D Printing Technologies

American Society for Testing and Materials (ASTM) classification


### 1. Vat Photopolymerisation

Stereolithography (SLA)
Digital Light Processing (DLP)
Continuous Liquid Interface Production (CLIP)

- 2. Material Jetting
- 3. Binder Jetting
- **4. Material Extrusion**Fused Deposition Modeling (FDM)
  Fused Filament Fabrication (FFF)
- 5. Powder Bed Fusion

  Multi Jet Fusion (MJF)

  Selective Laser Sintering (SLS)
  - Direct Metal Laser Sintering (DMLS)
- 6. Sheet Lamination
- 7. Directed Energy Deposition
  Wire and Arc Additive manufacturing (WAAM)



Source: https://www.hubs.com/get/am-technologies/

#### Advancing your Aerospace and Airport Business

#### WEBINAR NAG - 20 JUNI 2024

### 3D Printing: Why and When

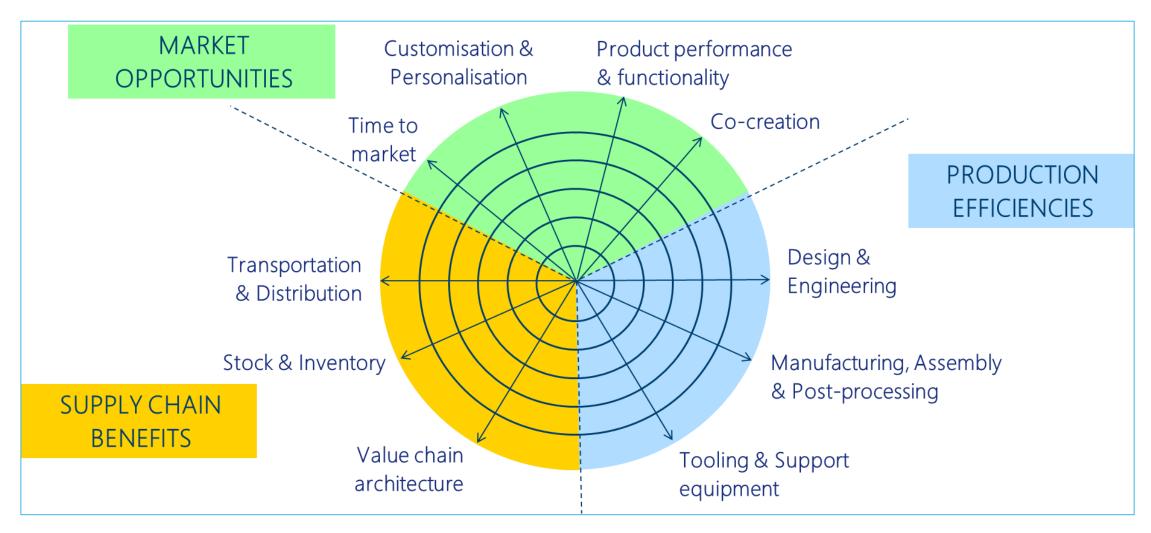
### 3D printing

- Because it is available → NO
- Because it delivers results

### > Cheaper

- To produce (less material, less labor)
- To use (less energy, longevity)
- To distribute (production close to location)
- To store (fewer pieces on stock)

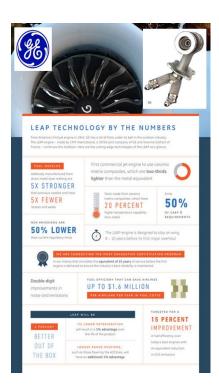
### > More sustainable


- Less waste after production
- Less energy (production, transport, use)
- Fewer parts to scrap

### > Better quality or functionality

- Functionally better design
- Improved ease of use
- Less maintenance or replacement




### **Typical benefits of AM**





### 3D Printing business case: Examples (1)

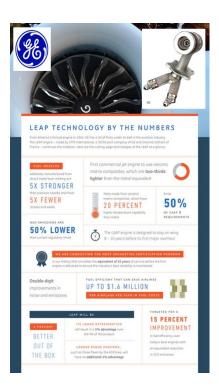
GE: Nozzle for Leap engine



### **Series of parts**

#### Fuel nozzle:

- 5\* stronger
- 5\* fewer parts
- 50% less emissions
- \$ 1,6 mln lower fuel cost/airplane


#### **Business**

- 50+ customers in 20 countries
- 6000+ orders, \$ 78 billion
- 25% + market share
- 2500 + jobs



### 3D Printing business case: Examples (1)

GE: Nozzle for Leap engine



### **Series of parts**

Fuel nozzle:

- 5\* stronger
- 5\* fewer parts
- 50% less emissions
- \$ 1,6 mln lower fuel cost/airplane

#### **Business**

- 50+ customers in 20 countries
- 6000+ orders, \$ 78 billion
- 25% + market share
- 2500 + jobs

### BMW: Thumb protector

 3D Printing used to reduce strain on employees' hands



 Lower number of working days lost due to illness

B

JIP I



































































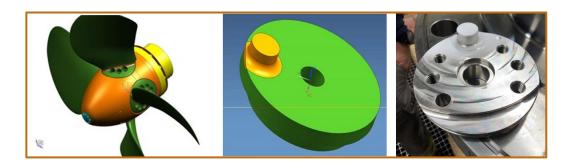
vallourec

Kongsberg Ferrotech

Berenschot

DNV

### **Joint Industry Projects**


## Developing standards for 3D printed (spare) parts in Oil, Gas & Maritime



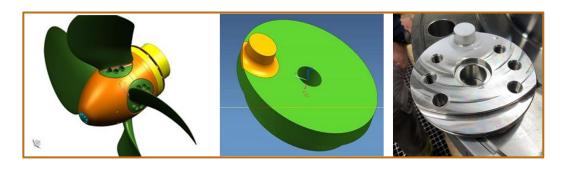


### 3D Printing business case: Examples (2)

Kongsberg case - Crank pin disc: repair and remanufacturing



### **Economic benefits**

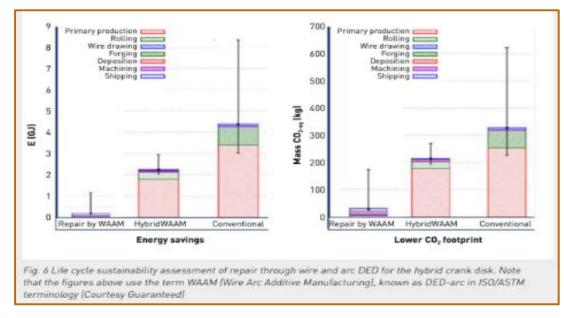

- Less material
- Reduced lead-times
- Less energy & fuel cost
- Lower distribution and Warehousing cost

**Savings 20 – 70%** 



### 3D Printing business case: Examples (2)

Kongsberg case - Crank pin disc: repair and remanufacturing




### **Economic benefits**

- Less material
- Reduced lead-times
- Less energy & fuel cost
- Lower distribution and Warehousing cost

**Savings 20 - 70%** 

### **Sustainability benefits**



- Hybrid DED: 50% energy, 33% CO2
- Repair DED: 95% energy, 90% CO2



### **AM** = Sustainability? Not always!

Findings during JIP Phase III

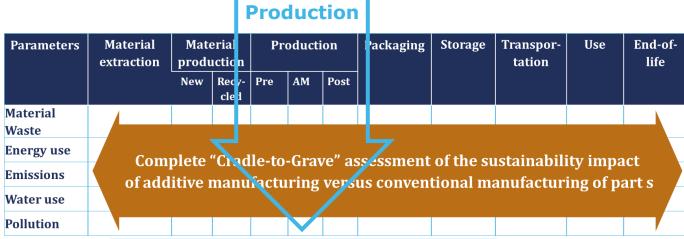
| Parameters        | _ | Material<br>xtraction                                                 | Material production |               | Production |    |      | Packaging | Storage | Transpor-<br>tation | Use | End-of-<br>life |  |
|-------------------|---|-----------------------------------------------------------------------|---------------------|---------------|------------|----|------|-----------|---------|---------------------|-----|-----------------|--|
|                   |   |                                                                       | New                 | Recy-<br>cled | Pre        | AM | Post |           |         |                     |     |                 |  |
| Material<br>Waste |   |                                                                       |                     |               |            |    |      |           |         |                     |     |                 |  |
| Energy use        |   | Complete "Cradle-to-Grave" assessment of the sustainability impact    |                     |               |            |    |      |           |         |                     |     |                 |  |
| Emissions         |   | of additive manufacturing versus conventional manufacturing of part s |                     |               |            |    |      |           |         |                     |     |                 |  |
| Water use         |   | S T P T T T T T T T T T T T T T T T T T                               |                     |               |            |    |      |           |         |                     |     |                 |  |
| Pollution         |   |                                                                       |                     |               |            |    |      |           |         |                     |     |                 |  |

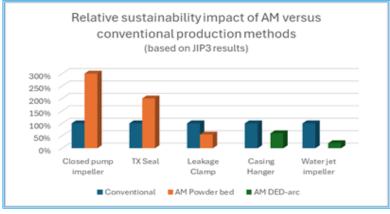


### **AM** = Sustainability? Not always!

Findings during JIP Phase III

 'On demand/on location' is more easily realized with AM → AM likely to support production in countries with cleaner energy mix, close to the point of use to reduce logistic emissions.


| Parameters        |  | Material<br>xtraction                                                                                                                    | Material production |               | Production |    |      | Packaging | Storage | Transpor-<br>tation | Use | End-of-<br>life |
|-------------------|--|------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------------|------------|----|------|-----------|---------|---------------------|-----|-----------------|
|                   |  |                                                                                                                                          | New                 | Recy-<br>cled | Pre        | AM | Post |           |         |                     |     |                 |
| Material<br>Waste |  |                                                                                                                                          |                     |               |            |    |      |           |         |                     |     |                 |
| Energy use        |  | Complete "Cradle-to-Grave" assessment of the sustainability impact of additive manufacturing versus conventional manufacturing of part s |                     |               |            |    |      |           |         |                     |     |                 |
| Emissions         |  |                                                                                                                                          |                     |               |            |    |      |           |         |                     |     |                 |
| Water use         |  |                                                                                                                                          |                     |               |            |    |      |           |         |                     |     |                 |
| Pollution         |  |                                                                                                                                          |                     |               |            |    |      |           |         |                     |     |                 |




### **AM** = Sustainability? Not always!

### Findings during JIP Phase III

- 'On demand/on location' is more easily realized with AM → AM likely to support production in countries with cleaner energy mix, close to the point of use to reduce logistic emissions.
- Powder-bed fusion for 'like-for-like' AM of casted parts, increases emissions during production →
   To be analyzed if the design (e.g. light-weighting) offers energy benefits during the use phase
- WAAM likely to reduce CO2
   emissions up to 40% vs. milling.
   because of less material use







### **Drivers for adoption of metal AM**

### **Adopters**

Main reasons to adopt

**Relative advantage** 

**Organisational image** 

**Pressure from competition** 

**Supplier marketing activities** 

### Visionary leaders

with room to manoeuvre are willing to step in, convince partners/stakeholders with

- The economics and benefits in operations
- Real life examples presented by end-users

UNIVERSITY OF TWENTE. Luuk Nolet



### **Drivers for adoption of metal AM**

### **Adopters**

Main reasons to adopt

**Relative advantage** 

**Organisational image** 

**Pressure from competition** 

**Supplier marketing activities** 

### Visionary leaders

with room to manoeuvre are willing to step in, convince partners/stakeholders with

- The economics and benefits in operations
- Real life examples presented by end-users

### Non-adopters Main reasons not to adopt

Complexity

**Financing costs** 

**Business case** 

**Reluctance at business partners** 

### Cautious managers

with investment guidelines and risk-assessments, can be convinced via:

- Real life examples including a business case
- Involving supply chain partners to share costs





### **3D Printing**

A valid technology to produce fully functional parts in many materials

### From Lab

- Prototype
- R&D, makerspace
- Manual
- Slow



### To Fab

- Validated end part
- **Industrial setting**
- Automated
- Quick
- 3D Printing: increased functionality, certified (spare) parts, cost effective tooling
- Not only plastics: Large size metal printing is possible, composites, alloys, ceramics, etc.



### **3D Printing**

A valid technology to produce fully functional parts in many materials

### From Lab

- Prototype
- R&D, makerspace
- Manual
- Slow



### To Fab

- Validated end part
- Industrial setting
- Automated
- Quick
- 3D Printing: increased functionality, certified (spare) parts, cost effective tooling
- · Not only plastics: Large size metal printing is possible, composites, alloys, ceramics, etc.
- 3D printing is a means, not a goal:
  - Determine the benefits you want to achieve
  - > For companies of all sizes, in every supply chain role
  - > Be your visionary self and create the future for your company

### Advancing your

#### WEBINAR NAG - 20 JUNI 2024

### **Any Questions?**



### **Onno Ponfoort**

Practice Leader 3D Printing



**M** + 31 (0) 6 - 150 14 751

+31 (0) 30 - 294 70 70

o.ponfoort@berenschot.nl

Find me as 'onno ponfoort' on 🛅 🔲







