CFIP Technology

Improving the mechanical and lightweighting performance of 3D printed products by injecting continuous fibers

Continuous Fibre Injection Process

The Continuous Fibre Injection Process (CFIP) is a new composite manufacturing technology for reinforcing parts with continuous fibres such as carbon fibres.

It is based on injecting the continuous fibres simultaneously with liquid resin inside tubular cavities in the part.

It also enables to integrally joint different parts by providing fibre continuity from end to end.

Continuous Fibre Injection Process

Reinforced part

CFIP, a new manufacturing concept

How continuous fibres were processed?

Placed upon a surface

Infusion, RTM, Autoclave, AFP, Filament winding, 3D Printing...

Shell-like structures

CFIP, a new manufacturing concept

How continuous fibres were processed?

Profiles

structures

3D-like structures

Key Principles

In order to enable the process automation, CFIP only acts from the tubular cavity inlet.

3 key principles enable the process:

- Simultaneous injection with pressurized resin:
 - Lubrication of the tubular cavity
 - Drag forces on the continuous fibres
- Push force is applied on the fibres

First ever CFIP Machine

REINFORCE

EINFORCE (8)

REINFORCE

DELTA

First ever CFIP machine

The first ever commercial machine able to perform the Continuous Fibre Injection Process (CFIP) automatically, enabling the manufacturing of highly complex and optimized parts with ultrahigh-performance materials at industrial scale. With our patented CFIP technology at its core, the machine is a dedicated solution for reinforcing parts with continuous fibres down to the last detail.

- Fibre types: carbon, glass, aramid, others
- Compatible with thermoset, thermoplastic and bio-sourced resins
- · Injector easily adaptable to different cavity diameters
- Intuitive Human Machine Interface
- Industrial grade components
- Accurate resin flow and pressure control
- Easy coupling to different parts' geometry, size and materials
- Suitable for a robot arm to maximize automation

Reinforce3D Products & Solutions

Who is our customer?

Applications that require Lightweighting and Strength

Innovative Companies

Component manufactures

Satellite Structure

Satellite antenna support

Specifications

Design and optimization Manufacturing and CFIP

Testing

Benchmark

Original Design	Specification	
Antenna	Eigenfrequency	> 70Hz
	 Boundary condition 	Hard Mounted
	 Dimensions 	385 x 345 x 115 mm3
	 Static Load (QL) 	20g (X,Y) / 25g (Z)
	 S-Band Antenna 	0.783kg
	 CoG Position 	X = 436.2mm Y = -1091.8mm Z = 3330.6mm
X K		

Satellite antenna support

Specifications

Manufacturing and CFIP

Testing

Benchmark

Satellite antenna support

Specifications

Design and optimization

Manufacturing Testing Benchmark and CFIP Type: Total Deformation Unit: mm Time: 1 s 4,7373 Max 4,211 3,6846 3,1582 2,6318 2,1055 1,5791 1,0527 0,52637 0 Min

Satellite antenna support

Satellite antenna support

Specifications

Design and optimization

Manufacturing and CFIP

Testing

Benchmark

Satellite antenna support

Specifications

Design and optimization

Manufacturing and CFIP

Testing Benchmark

Satellite antenna support

Specifications

Design and optimization

Manufacturing and CFIP

Testing

Benchmark

Satellite antenna support

Specifications

Design and optimization

Manufacturing and CFIP

Testing

Benchmark

Aircraft Bracket

Specifications

Two load cases

Maximum shear load per screw constraint

Objective: minimize the weight while keeping the structural integrity

Design of fibre trajectories

Lightweighting performance

Detail Design

FEM Validation

Final Prototype

- AM: PEEK (FFF)
- Fibres: HS Carbon
- Resin: Epoxy

Benchmark

Thanks!

Revolutionizing the carbon fibre reinforcement

Marc Crescenti Founder and CTO marc.crescenti@reinforce3d.com

